A Three-Step Method for Delineating Functional Labour Market Regions

Dr. Per Kropp
Barbara Schwengler

DRAFT VERSION

– The final paper will be published in a forthcoming issue of Regional Studies –
A Three-Step Method for Delineating Functional Labour Market Regions

Index

Abstract .. 1
1 Introduction .. 3
2 Current state of research ... 4
3 Data.. 8
4 Method .. 11
5 Results .. 18
 5.1 The cluster generator at work .. 18
 5.2 Choosing the analytically best delineation ... 19
 5.3 Optimisation procedure ... 22
 5.4 The robustness of the labour market delineation 25
 5.5 Descriptive data ... 27
 5.6 Comparison with other delineations ... 30
6 Conclusions and outlook .. 35
7 References .. 37
8 Endnotes .. 42
Abstract
In our paper we propose a new approach for delineating functional labour market regions based on commuting flows with strong interactions within the region and few connections with outside areas. As functional regions are an important basis for analysis in regional science and for labour market and economic policy it is necessary to define functional regions in an adequate way.

While previous studies devoted to the delineation of labour market regions have employed a variety of methodological procedures, such as cluster analysis, the threshold method and factor analysis, we apply the graph theoretical approach as a suitable method. Based on a modification of a dominant flow approach we produce many meaningful delineations for labour market regions using the commuting flows of all employees in Germany who were subject to the compulsory social security scheme on 30 June for the years 1993 to 2008 on municipal level.

To find the best delineation we introduce the modularity measure Q that is commonly used in network science. With this measure it is possible to compare different delineations in an unbiased way with regard to the number of defined regions in contrast to measures like commuting shares or self-containment ratios. In comparison to established delineations in Germany our best result was confirmed by other commonly used measures: Delineations with high modularity values had fewer outward commuters, more balanced commuting ratios, and higher levels of employment and self-containment. But, the modularity measure Q does not necessarily improve if regions are merged.

We found out that good delineations comprise just a small number of labour market regions for Germany, round about 30 to 75. The best result we found was a 50-labour-market delineation, in other words fewer regions than the well-established functional delineations in
Germany with 96, 150 or 270 units. These 50 labour market regions are quite heterogenous in their terms of size.

Especially around large cities complex commuting patterns lead to large labour market regions. These large agglomerations can by no means be characterised as dominant centres and immediate commuter belts. Commuting flows between sub-centres within the hinterland and between the hinterland and the periphery also play an important role. Even if the labour market regions transcend the boundaries of commuter belts, they constitute a common labour market.

We could also show that established functional delineations in Germany do not always capture important commuting relations between regions in an appropriate way, as observed from the significantly higher commuting rates in the case of delineations comprising a large number of regions. This is especially true for delineations that are subject to certain restrictions such as minimum size, maximum commuter times within the labour market region, and consistency with administrative boundaries.

Functional regions, Regional Labour Markets, Modularity, Germany

JEL classifications: D85, J61, R23, C49
1 Introduction

The selection of appropriate geographic regions has been and remains an important topic in regional science (JONES and PAASI, 2013). For regional analysis, it is necessary to adequately define functional regions with strong interactions within the functional regions and few connections with other outside regions. The advantage of functional regions is that they reflect spatial aspects of economic activity and therefore represent relevant units of analysis for regional research. In contrast, administrative territorial units do not meet these criteria because they typically evolved historically and are related to administrative structures.

Previous studies on the delineation of labour market regions have employed a variety of methodological procedures, such as cluster analysis (TOLBERT and KILIAN, 1987), the threshold method (OFFICE FOR NATIONAL STATISTICS (ONS) and COOMBES, 1998), factor analysis (ECKEY et al., 2006; KOSFELD and WERNER, 2012), and a graph theoretical approach (KROPP and SCHWENGLER, 2011). KROPP and SCHWENGLER (2008) compared selected methods using various measures of quality and found that clustering procedures and a graph theoretical approach could capture commuting interactions better than other methods.¹

In the current paper, we propose a new approach for delineating functional labour market regions based on commuting flows between German municipalities. We use the data of all employees in Germany who were subject to the compulsory social security scheme on 30 June for the years 1993 to 2008, including information on their place of work and place of residence. The current method is divided into three steps. First, we use a modification of NYSTUEN and DACEY’s (1961) dominant flow approach to create many meaningful delineations. In a second step, we introduce the modularity measure Q, which is commonly used in network science (NEWMAN and GIRVAN, 2004). This measure allows the comparison of different delineations. In contrast to established measures such as commuting
shares and self-containment, the modularity measure Q is unbiased with regard to the number
of defined regions. Finally, some minor adjustments are made to ensure regional coherence
and to correct for inappropriate assignments during the hierarchical cluster procedure in the
first step.

In general, the present approach answers the question “What is a region?” by examining
the structure of regional interaction. Because the current method is unrestricted with regard to
commuting times and minimum or maximum sizes, it may serve as a reference for approaches
that must include such restrictions.

The present paper is organised as follows. The next section provides an overview of the
current state of research. The third section describes the data set and the procedure employed
to merge municipalities to form municipal regions. The three-step method is outlined in the
fourth section. The resulting delineation, its robustness, important descriptive characteristics,
and a comparison with other delineations are presented and discussed in the fifth section. The
paper concludes with a summary of the present findings and recommendations for future
research.

2 Current state of research

The concept of a functional economic region attempts to capture the reality of spatial
economic processes as accurately as possible. Hence, a functional region is defined as an area
in which a large proportion of the economic activity of the resident population and industry
occurs within its boundaries (SMART, 1974, p. 261; COOMBES et al., 1986, p. 944; VAN
DER LAAN and SCHALKE, 2001, p. 205; BONGAERTS et al., 2004, p. 2). This is
frequently referred to as the self-containment level of a region.

Early studies that considered the question of how economic activity is spatially distributed
include Thünen’s model of a monocentric economy and the theory of agglomeration
economies (MARSHALL, 1890). Further developments of this theory resulted in the Central
Place Theory, which was developed in the 1930s by WALTER CHRISTALLER (1933) and AUGUST LOESCH (1940). The concept of a “central place” played a key role in German regional planning policy in the 1960s and 1970s. Focusing initially on establishing equal living conditions in various regions, the concept was later extended at the federal state level to include a development function, the scope of which varies from state to state. In the 1980s, the central place concept came under increasing attack. However, it regained importance in the 1990s, both nationally (as a result of German unification) and at the level of the EU. Today, it continues to play an important role in regional and federal state-level planning (BLOTTEVOGEL, 1996, p. 655; 2005, p. 1314).

In recent years, these theories have become the subject of renewed discussion in relation to the core-periphery model of the New Economic Geography (KRUGMAN, 1991), which explains why and how economic agglomerations emerge. The clustering of different activities can produce positive economies of scale and help raise the competitiveness of the region and neighbouring regions (spillover effects). Economies of agglomerations include, on the one hand, the localisation benefits that firms obtain when they locate themselves near each other to lower their average costs by producing more goods (economies of scale). In addition, companies can benefit from a common pool of labour. On the other hand, regions obtain urbanisation benefits when enterprises produce different products at the same time in the same location to save costs (economies of scope). The agglomeration of economic activity leads to an agglomeration of the population; thus, enterprises from various sectors can jointly avail themselves of a market of potential customers.

To adequately describe and explain the development of economic agglomerations, appropriately delineated functional regions should be used as units of analysis. The question of the appropriate definition of an areal unit thus arises. The results of analyses can be quite contradictory, depending on the size of the underlying territorial unit. Against the background
of the modifiable areal unit problem (MAUP), it is important to employ a territorial unit that is suited both to the objective of the analysis and to the policy area in question (see also OPENSHAW, 1984; MADELIN et al., 2009). Spatial interaction models may cope with this problem in a statistical manner. However, the use of functional regions can reduce the model complexity in such situations. For example, DAUTH (2010) based his analyses of the employment effects of urban interindustry spillovers on functional regions. This method allowed him to use the weight matrix to model interindustry spillovers rather than regional spillovers.

Another example is regional statistics, for which separate analyses are based on the place of residence and the place of employment, thereby producing distorted results. If an indicator such as the employment rate\(^2\), which is measured at the place of residence, is offset against an indicator such as income, which is measured at the place of employment, a suitable territorial unit that comprises both the place of residence and the place of employment must be utilised. Similarly, descriptive comparisons that are based on statistics such as commuter ratios provide invalid results if, for example, one city is delineated with its commuter belt and a second city is not. In contrast to administrative regions, well-defined functional delineations can provide a valid foundation for such comparisons.

In general, functional regions are defined by analysing home-to-work commuting flows. Small-scale administrative regions constitute the starting point in this regard. Unidirectional commuting flows, bidirectional commuter interactions, workers' access to jobs, or firms' access to workers can be used (KARLSSON and OLSSON, 2006, pp. 5ff.). The self-containment level in functional regions should be as high as possible (COOMBES et al., 1986, p. 944), which occurs when there is a high level of commuter interaction within the region and a low level of commuter interaction with other regions (HENSEN and COERVERS, 2003, p. 9). However, depending on the research question and the available
data, functional regions can be generated using other flows, such as goods and services, communication, and traffic, or regional price levels, such as property prices (BODE, 2008, p. 144).

VAN NUFFEL (2007) and KROPP and SCHWENGLER (2008) provided an overview of functional delineations and the methods used for definitions. Travel-to-Work Areas (TTWAs) based on threshold methods are used in Great Britain (OFFICE OF NATIONAL STATISTICS (ONS) and COOMBES, 1998) and Spain (CASADO-DIAZ, 2000). In Great Britain, these methods serve as a basis for statistics and have been used in local government reorganisation, labour market analyses, and industrial policy. (Local) Labour Market Areas (LLMAs), delineated by means of hierarchical cluster analysis, exist in the Netherlands (VAN DER LAAN and SCHALKE, 2001; COERVERS et al., 2009) and the USA (TOLBERT and KILIAN, 1987). German Regional Labour Markets are defined by factor analysis (ECKEY et al., 2006; KOSFELD and WERNER, 2012) and a graph theoretical approach (KROPP and SCHWENGLER, 2011). In Germany, there are two additional established delineations. The 270 labour market regions of the Joint Task of the Federal Government and the federal states dedicated to the "Improvement of Regional Economic Structure" serve as diagnostic units for identifying regions that are eligible for regional aid. In contrast, the 96 regional planning regions are the territorial units that are employed in the Federal Government's regional planning reports. The various delineations that are employed in practice are frequently subject to certain constraints and guidelines, such as the requirements that they coincide with federal state or district boundaries and that commuting does not exceed a particular distance.

Scientific studies on the delineation of labour market regions in Germany have been conducted since the early 1970s (for example, KLEMMER and KRAEMER, 1975; ECKEY, 1988). A comparative study that was conducted by KROPP and SCHWENGLER (2008) revealed that a graph theoretical approach and the cluster analysis method are the most
suitable means of delineating functional labour market regions by commuting flows. Furthermore, they identified that the optimal data basis is achieved by measuring bidirectional flows, i.e., in- and out-commuting movements, to determine the degree of interaction between two regions.

Although the research question of the current paper (i.e., what definition of functional labour markets best captures the structure of underlying commuting flows) is a classical question of regional science, the tools to answer this question originate from graph theory and network research. The network analysis of structural properties of interactions has increasingly gained attention in regional science over the last decade (GLÜCKLER, 2007; TER WAL and BOSCHMA, 2009). Network approaches added the concept of “space of flows” to the concept of “space of places” (CASTELLS, 1996). For example, TER WAL and BOSCHMA (2009) claimed that network analysis has a substantial potential to enrich the literature on clusters, regional innovation systems, and knowledge spillovers. These approaches typically focus on the position of actors (or regions) within a network. The current approach adds a new dimension. Specifically, we apply an approach that is used for “community detection” in networks (FORTUNATO, 2010) to assess how well functional regions capture commuting flows. In particular, a modification of NYSTUEN and DACEY’s (1961) dominant flow approach is used to generate many functional delineations. Then, we assess the quality of these delineations using the modularity measure Q (NEWMAN and GIRVAN, 2004), a measure that was developed in recent network research.

3 Data

The delineation of labour market regions, both in Germany and elsewhere, is based mainly on analyses of commuting flows. The present study’s commuting data were obtained from the German Federal Employment Agency (Bundesagentur fuer Arbeit) statistics for the years 1993 to 2008 for all employed persons in Germany who were subject to the compulsory social
security scheme on 30 June. The year 1993 was selected as the starting year because valid data for the whole of Germany have only been available since then. As a supplement to the analysis of commuting flows in individual years, the first and last three years were grouped into two single categories and examined separately. As a rule, such categories yield more reliable results than do individual years (cf. VAN DER LAAN and SCHALKE, 2001, p. 206). The years 1993 to 1995 form the category OLD, and the years 2006 to 2008 comprise the category NEW. In the category NEW, the year 2008 was weighted twice as heavily as 2007, and 2007 was weighted twice as heavily as 2006. The years in the category OLD were weighted in an analogous manner, with the data for 1993 being the most heavily weighted. Weighting was undertaken due to the particular interest in analysing the oldest and the most recent data.

For 2008, the data source covered a total of 27.3 million employed persons, or 68% of all employees (BUNDESAGENTUR FUER ARBEIT, 2008, p. 19). Because both the employee’s place of residence and the location of the company were reported, commuting data are available at the municipal level. Hence, commuting flows can be captured at this level of aggregation. However, depending on the federal state in question, German municipalities vary considerably in size. Whereas the municipalities in Rhineland-Palatinate and Schleswig-Holstein are often quite small, the municipalities in similarly densely populated areas in North Rhine-Westphalia are many times larger. To create a more homogeneous data basis, the approximately 12,000 municipalities were aggregated by merging sparsely populated municipalities that are located close to each other. To perform this merge, we determined the distances between all municipality pairs M_{ij} and calculated the fusion coefficient F_{ij} according to the following formula:

$$F_{ij} = \text{distance}_{ij}^2 \cdot (\text{inhabitants}_i + \text{inhabitants}_j) \text{ where } i=1,\ldots,n \text{ and } j=1,\ldots,n$$
The two municipalities with the lowest F_{ij} coefficients merged to form a single municipal region. This region was assigned both the sum of the inhabitants of the two original municipalities and the coordinates of the municipality with the greatest population. This hierarchical cluster procedure was repeated until a solution with 2,000 municipal regions that were quite homogenous in size was achieved. A significantly greater number of merging steps would lead to larger municipalities and would affect small towns. In the aggregation conducted here, the distance between the merged municipalities did not exceed 17 km (average 4 km). In addition, the sum of the inhabitants of the two original municipalities in each municipal region did not exceed 173,000 inhabitants (average 9,747). Using this procedure, it was possible to homogenise the sizes of the regions considerably across the federal states. In some federal states, nearly all municipalities (except cities) were affected; in other federal states, rather few municipalities were affected.

Therefore, we arranged the data in a matrix of commuter relations between municipal regions. We utilised bidirectional flows (i.e., the sum of in- and out-commuters) because these aggregated flows appropriately represent interactions between regions. A total of 3,998,000 (2,000*2,000-2,000) possible commuting relationships were included in the analysis. The largest number of commuting interactions occurs between neighbouring regions and to or between the largest labour market centres. Furthermore, the aggregation to 2,000 regions speeds up the computing time considerably and allows for a better view of the resulting maps. Furthermore, data problems with very small municipalities (i.e., with no commuters) and those resulting from administrative changes can be avoided⁴. Of note, the procedure that generates municipal regions does not use commuting flows. However, it ensures that analyses of commuter flows are less disturbed by varying spatial differentiations across federal states.
4 Method

As mentioned above, bidirectional commuting flows are the most suitable basis for the delineation of labour market regions. However, in selecting a delineation method, there are only a few theoretical arguments to employ (see, for example, ECKEY et al., 2006, pp. 301f).

In general, the arbitrary choice of the threshold value militates against threshold models. In contrast, the problem with hierarchical clustering procedures is that assignments to a cluster are not automatically corrected when the structure of the cluster changes. Such changes occur, for example, when an area that is assigned to a labour market region at an early stage in the clustering process has more intense commuting interactions with another labour market region that is aggregated at a later stage. ECKEY et al. (2006, p. 302) also criticised the fact that most procedures do not account for indirect commuting flows. Hence, the factor analysis approach that they proposed is preferable from a theoretical point of view. However, a comparison of the different methods using various measures of quality, such as the level of self-containment, commuting rates, and modularity, revealed that a modification of a graph theoretical approach and customised clustering procedures yielded the best results (KROPP and SCHWENGLER, 2008, pp. 44ff. and 50). After further improvements to the algorithm, the graph theoretical approach proved to be the best strategy. Following this approach, we present our three-step method.

For several years, graph theory, or more precisely, the concept of dominant flows (NYSTUEN and DACEY, 1961), and approaches based thereon have been employed in the field of regional studies to analyse flow data and classify the catchment areas of individual flows (RABINO and OCCELLI, 1997; HAAG and BINDER, 2001; GORMAN et al., 2007). The concept of dominant flows is based on a set of nodes that represent areal units that are associated with each other through inflows and outflows of different intensity. Each node has its strongest association with one other node. Only flows from smaller to larger (for example,
from less populous to more populous) regions are considered dominant flows, which form a partial graph of connected regions. In this way, the spatial structure can be represented by a hierarchically organised graph such as a tree whose “trunk” is rooted in a region that does not have a dominant flow to a larger region and can therefore be considered the centre of a labour market region. In this concept, flows other than the dominant associations are not considered, although they can be quite intense. NYSTUEN and DACEY (1961) used intercity telephone calls in Washington State to illustrate their procedure for ordering and grouping cities based on the magnitude and direction of flows. However, their approach can readily be applied to all types of flows of goods, services, and people.

To generate a wide range of cluster solutions, the present study uses the concept of dominant flows with three adaptations (see Fig. 1 for an example). First, we investigate the entire territory of the Federal Republic of Germany rather than only one supposed labour market centre and its hinterland. Therefore, all commuter flows within the whole country are considered. The above-mentioned 2,000 municipal regions are the starting point of the analysis. We compute the bidirectional flows (aggregated inward and outward flows) among these regions and their relative share compared to the resident employed labour force. The largest share is labelled as a dominant flow if a small region is connected to a larger region, thereby marking a potential merger (underscored in Fig. 1).

Second, we use a range of different thresholds to determine which dominant flows to merge. The dominant flows above the threshold form a tree graph, i.e., the (temporary) labour market region. In this way, many possibly meaningful delineations are generated. Therefore, we label this procedure as a “cluster generator”. The original approach of NYSTUEN and DACEY (1961) resembles a threshold of zero. In this case, all regions are merged into one tree-like graph except regions that are completely isolated from each other.
By choosing higher thresholds, the merging process is interrupted earlier, resulting in more trees (and, consequently, regions).

Third, based on the graph theoretical approach, commuting flows between the preliminarily merged regions (and possibly remaining isolated regions) are recalculated, and the aforementioned procedure is repeated with the same thresholds until no changes occur. During these iterations, more municipal regions are assigned to a labour market region, and provisional labour market regions are merged. Here, higher thresholds slow the merging process.\(^6\)
Commuting matrix (example)

<table>
<thead>
<tr>
<th>Regions</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>600</td>
<td>65</td>
<td>15</td>
<td>25</td>
<td>705</td>
</tr>
<tr>
<td>B</td>
<td>50</td>
<td>700</td>
<td>10</td>
<td>10</td>
<td>770</td>
</tr>
<tr>
<td>C</td>
<td>30</td>
<td>20</td>
<td>200</td>
<td>15</td>
<td>265</td>
</tr>
<tr>
<td>D</td>
<td>30</td>
<td>40</td>
<td>25</td>
<td>300</td>
<td>395</td>
</tr>
</tbody>
</table>

Aggregated inward & outward commuting flows

<table>
<thead>
<tr>
<th>Regions</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1200</td>
<td>115</td>
<td>45</td>
<td>55</td>
<td>1415</td>
</tr>
<tr>
<td>B</td>
<td>115</td>
<td>1400</td>
<td>30</td>
<td>50</td>
<td>1595</td>
</tr>
<tr>
<td>C</td>
<td>45</td>
<td>30</td>
<td>400</td>
<td>40</td>
<td>515</td>
</tr>
<tr>
<td>D</td>
<td>55</td>
<td>50</td>
<td>40</td>
<td>600</td>
<td>745</td>
</tr>
</tbody>
</table>

Relative shares & dominant flows (smaller to larger regions)

<table>
<thead>
<tr>
<th>Regions</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>84.8%</td>
<td>8.1%</td>
<td>3.2%</td>
<td>3.9%</td>
<td>100.0%</td>
</tr>
<tr>
<td>B</td>
<td>7.2%</td>
<td>87.8%</td>
<td>1.9%</td>
<td>3.1%</td>
<td>100.0%</td>
</tr>
<tr>
<td>C</td>
<td>8.7%</td>
<td>5.8%</td>
<td>77.7%</td>
<td>7.8%</td>
<td>100.0%</td>
</tr>
<tr>
<td>D</td>
<td>7.4%</td>
<td>6.7%</td>
<td>5.4%</td>
<td>80.5%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

New commuting matrix

Merging regions with dominant flows > 8%

<table>
<thead>
<tr>
<th>Regions</th>
<th>A+B+C</th>
<th>D</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+B+C</td>
<td>1690</td>
<td>50</td>
<td>1740</td>
</tr>
<tr>
<td>D</td>
<td>95</td>
<td>300</td>
<td>395</td>
</tr>
</tbody>
</table>

Aggregated flows

<table>
<thead>
<tr>
<th>Regions</th>
<th>A+B+C</th>
<th>D</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+B+C</td>
<td>3380</td>
<td>145</td>
<td>3525</td>
</tr>
<tr>
<td>D</td>
<td>145</td>
<td>600</td>
<td>745</td>
</tr>
</tbody>
</table>

Relative shares and dominant flows

<table>
<thead>
<tr>
<th>Regions</th>
<th>A+B+C</th>
<th>D</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+B+C</td>
<td>95.9%</td>
<td>4.1%</td>
<td>100.0%</td>
</tr>
<tr>
<td>D</td>
<td>19.5%</td>
<td>80.5%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

New commuting matrix

Merging regions with dominant flows > 8.5%

<table>
<thead>
<tr>
<th>Regions</th>
<th>A+C</th>
<th>B</th>
<th>D</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+C</td>
<td>845</td>
<td>85</td>
<td>40</td>
<td>970</td>
</tr>
<tr>
<td>B</td>
<td>60</td>
<td>700</td>
<td>10</td>
<td>770</td>
</tr>
<tr>
<td>D</td>
<td>55</td>
<td>40</td>
<td>300</td>
<td>395</td>
</tr>
</tbody>
</table>

Aggregated flows

<table>
<thead>
<tr>
<th>Regions</th>
<th>A+C</th>
<th>B</th>
<th>D</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+C</td>
<td>1690</td>
<td>145</td>
<td>95</td>
<td>1930</td>
</tr>
<tr>
<td>B</td>
<td>145</td>
<td>1400</td>
<td>50</td>
<td>1595</td>
</tr>
<tr>
<td>D</td>
<td>95</td>
<td>50</td>
<td>600</td>
<td>745</td>
</tr>
</tbody>
</table>

Relative shares and dominant flows

<table>
<thead>
<tr>
<th>Regions</th>
<th>A+C</th>
<th>B</th>
<th>D</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+C</td>
<td>87.6%</td>
<td>7.5%</td>
<td>4.9%</td>
<td>100.0%</td>
</tr>
<tr>
<td>B</td>
<td>91%</td>
<td>87.8%</td>
<td>3.1%</td>
<td>100.0%</td>
</tr>
<tr>
<td>D</td>
<td>12.8%</td>
<td>6.7%</td>
<td>80.5%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Fig. 1: Four regions example: Initial merging of regions with two different thresholds

Fig. 1 illustrates the procedure thus far. The procedure begins with matrices of unidirectional and bidirectional commuting flows, the latter forming the basis for computing the relative shares. Dominant flows (i.e., the largest share of flows from a smaller to a larger region) are printed in bold and underlined in the lower part of the boxes. If these values are higher than a choosen threshold, they indicate which regions form a sub-graph (or common region). For a
threshold of 7, all four regions are merged (C→A, D→A, A→B). Thresholds of 8 or 8.5 result in two (C→A→B; D) or three regions (C→A; B; D), respectively. If the procedure is repeated with the resulting regions, they are merged into one region (threshold 8: D→(A+B+C); threshold 8.5: B→(A+C), D→(A+C)). With a threshold above 9, however, there are no mergers.

The cluster generator combines NYSTUEN and DACEY’s (1961) dominant flow approach and the threshold method into a hierarchical clustering procedure. Because we study flows not only between individual regions but also between individual regions and aggregated regions and between aggregated regions, indirect commuting interactions are also considered.

Depending on the actual threshold values and the number of iterations performed, a wide array of delineations of labour market regions are defined by the proposed cluster generator. Then, the “best” cluster solution must be selected. An obvious selection is the delineation with the fewest commuters between labour market regions. However, the number of commuters decreases with the number of labour markets and is minimised if there is only one labour market. In addition, measures such as the commuting ratio and self-containment ratio, which are discussed in section 5.5, are not independent of the number of delineated regions.

A different quality criterion – modularity – has been developed to measure clustering in networks (NEWMAN and GIRVAN, 2004). The commuting relations between regions represent such a network, with regions as nodes and the number of commuters between them as links. Employees who work and live in the same region are represented as a loop that connects a node with itself. The modularity approach compares the actual link values inside a cluster with the expected link values if the network was random. In graph theory and network research, the definition of an appropriate random network has been widely discussed, beginning with Rapoport’s seminal paper in 1957 (RAPOPORT, 1957). Watts’ famous “Six Degrees: The Science of a Connected Age” explores a new random process, “random
rewiring”, that is able to capture real-world network structures (WATTS, 2003). Today, Newman and Girvan’s approach (NEWMAN and GIRVAN, 2004) is established in network research (BRANDES et al., 2008). This approach produces a network with the same number of nodes and each node maintaining its network degree (i.e., the value of in-going and out-going links), but the links are otherwise randomly distributed. In this sense, the random network preserves important structural characteristics of the actual network but serves as a null model (FORTUNATO, 2010, p. 86). Clustering exists if the observed number of links in a sub-graph (the cluster or labour market region) is greater than the number of links in the null model. This approach can be summarised in the following formula: \[Q = \sum(e_{ij} - a_{ij}^2) \], with \[a_{ij} = \sum e_{ij} \] and \[e_{ij} \] representing the flow between \(i \) and \(j \) as a fraction of all units.

This calculation is based on a symmetrical\(^7\) interaction matrix of clusters with cells that contain the share of all units rather than the number of units themselves. Therefore, the entire matrix sums to the value of one. The diagonal groups the share of units that are contained in the clusters (people living and working within one labour market region), and the area outside of the diagonal contains the proportion of units that are not contained within clusters (therefore, commuters between labour market regions). The trace of the matrix (the sum of diagonal cells) reflects the percentage of non-commuters. One important characteristic of the matrix is that the expected cell value can be computed by multiplying the row sum (proportion of non-commuters and out-commuters) and column sum (proportion of non-commuters and in-commuters). In the symmetric matrix, this product is equivalent to the term \[a_{ij}^2 \]. The expression \[e_{ii} - a_{ii}^2 \] compares the empirical distribution with the null model.

If the division into clusters is not better than a random division, then \(Q \) is equal to zero. A value that approaches the maximum of \(Q = 1 \) indicates a strongly modular structure that has been correctly captured by the clustering procedure. The values typically fall between 0.3 and
0.7, in the wide array of areas in which network measures are applied. For commuting data, in which high levels of clustering in agglomerations occur, comparatively higher values can be expected. In a comparative study of the various procedures, KROPP and SCHWENGLER (2008, pp. 40f.) achieved values that were well over 0.8. Such values are also found in the delineation proposal that is presented in the next section. The advantage of maximising the modularity measure in comparison to minimising commuter shares or maximising self-containment (cf. section 5.5) is that the latter is only achieved by merging all regions into one region, whereas the modularity approach uses an appropriate null model (cf. NEWMAN and GIRVAN, 2004, p. 7).

After varieties of delineations have been defined using the modified dominant flow method and an optimal delineation has been selected with the help of modularity values, the result is further improved in a final optimisation process. This process serves the following three purposes: it (re)assigns municipalities to labour market regions in accordance with their strongest commuter flows; it corrects the labour market assignment for municipalities that are completely surrounded by another labour market; and it assigns isolated municipalities with no data or comparatively few commuters to the closest labour market region. If the previous delineation process works well, these steps should result in minor changes. In the presented case, we also use the optimisation procedure to generate the final delineation on municipal level rather than municipal region level.

To conclude, the proposed delineation procedure can be summarised in the following steps:

A. Cluster generator\(^8\) (results in section 5.1)
 1. Compute a bidirectional flow matrix of all regions.
 2. Compute the commuters' share of employees residing in the same region (row-wise normalisation).
 3. Select dominant flows, i.e.,
 - strongest interaction that a region has with other regions,
 - from a less to more populated region,
 - above a certain threshold.
4. Merge regions that are connected by dominant flows.
 > Continue with step 1 until no changes occur.
B. Selection (results in section 5.2)
 Select the cluster solution with the highest modularity value Q.
C. Final optimisation process (results in section 5.3)
 1. Ensure that each region is connected to the labour market region with which it
 has the highest bidirectional flow.
 2. Assign isolated municipal regions with no data or comparatively few
 commuters to the closest labour market region.
 3. Ensure regional coherence of labour market regions.

In principle, the cluster generator does not need to be based on the current procedure. It is
effective for various types of procedures. For example, cluster analysis and factor analysis
also provide cluster solutions. By comparing various methods the graph theoretical approach
has been more successful to produce delineations with strong interactions within labour
market regions and few connections to outside regions than other methods (KROPP and
SCHWENGLER, 2008). It is possible that we are not aware of all clustering procedures. In
network research, some promising modularity optimising methods are currently in
development. However, algorithms for valued graphs (WALTMAN et al., 2010; BLONDEL
et al., 2008) are not yet alternatives to the current approach.

5 Results
5.1 The cluster generator at work

Depending on the threshold value for the dominant flows and the number of iterations of the
algorithm, several labour market delineations are achieved. For the aggregated matrix NEW
(years 2006 to 2008), thresholds of 1% to 12% led to up to 7 iterations and more than 60
different cluster solutions. With a threshold of 1, the 2,000 municipal regions were merged
into 43 regions in one step (which includes merging all regions that are connected – directly
and indirectly – by dominant flows greater than 1% of the resident employed labour force)
and into only 4 regions after the second iteration. In contrast, with a threshold of 12%, the
process ended after 7 iterations, with 178 regions.
5.2 Choosing the analytically best delineation

Fig. 2 presents the modularity Q values for delineations resulting from different thresholds and iterations for the aggregated matrix NEW (years 2006 to 2008). The values on the x-axis represent the number of labour market regions that were generated by the cluster generator. The lines mark the highest modularity (Q = 0.8447), which was achieved by merging the municipal regions to form 51 labour market regions (applying a threshold of 7 and performing 4 iterations).

![Modularity Q values for different thresholds and iterations](image)

Fig. 2: Modularity Q values for different thresholds and iterations

Source: Authors' own illustration

Fig. 2 reveals several important characteristics. First, with the current data, very high modularity values can be achieved only if the municipal regions are grouped into between 30 and 100 labour market regions. Rougher or significantly finer divisions achieve lower values of Q. This finding also applies when other delineation procedures are employed (cf. KROPP, 2009). Second, in the case of low threshold values (dark circles), the municipal regions are
quickly grouped into a few very large labour market regions. Hence, delineations with lower threshold values tend to be located on the left side of Fig. 2. In contrast, very high threshold values (light circles) stop the merging process at a point with many labour market regions and very high modularity values have not yet been reached.

The delineation process that yielded the highest modularity (denoted by the thickest black lines) is shown in the map of Germany in Fig. 3. Fig. 3 also shows the results of the first three iterations (denoted by thinner lines), which produced smaller labour market regions. The first iteration yielded 337 labour market regions, with a modularity of \(Q = 0.7502 \). The second iteration produced 118 labour market regions and achieved a high modularity of \(Q = 0.8228 \). After the third iteration, the quality of the division (\(Q = 0.8411 \) for 60 labour market regions) differed only slightly from the best solution (\(Q = 0.8447 \) for 51 regions), which was obtained after four iterations (see Table 4 in section 5.5. for a comparison with other quality measures).

20

Fig. 3: Iterations with threshold 7 leading to the analytically best delineation result for municipal regions

Source: Authors' own illustration
Fig. 3 also shows that monocentric regions (i.e., regions such as Hamburg, Berlin, and Munich, which are dominated by a metropolis) grew particularly quickly. This result is reasonable because the commuting flows were frequently directed towards one centre. In polycentric regions such as the Ruhr area (see the Duesseldorf-Ruhr area in Fig. 3), however, clearly dominant commuting flows were the exception. Nonetheless, the results also appear plausible in these polycentric regions. After the first iterative step, very small-scale delineations continued to dominate. However, after the second iteration, quite large-scale labour markets were apparent. These regions grew further in the third iterative step. In the fourth iteration, the Duesseldorf and Ruhr regions were merged into the labour market region of Duesseldorf-Ruhr. The spatial structures revealed in this process are consistent with recent regional studies (BLOTEVOGEL and SCHULZE, 2010, p. 268). Without an adequate aggregation of both the concentrated commuting flows in monocentric regions and the more network-like interactions in polycentric regions, it is impossible to achieve very high modularity values for the delineation.

Of note, the parameters for the delineation (threshold value and number of iterations) were not arbitrarily specified; instead, they were selected using a quality criterion, the modularity value. The delineation that was eventually chosen comprised 51 labour market regions that were quite heterogeneous in terms of size, which may not seem suitable for practical applications at first sight.

5.3 Optimisation procedure

The final step ensured that each region was assigned to the labour market region with which it had the strongest commuting interactions. By applying the correction procedure on a municipal level (rather than a municipal region level), we produced a delineation on the smallest regional level for which data were available. When necessary, the original assignment was corrected by reassigning a municipal region to the regional labour market
with which it had the strongest relation. Because the reassignment of one municipality can affect the assignment of neighbouring regions, this correction process was repeated until a stable solution was achieved. During this procedure, approximately 6% of all municipalities, with only 1.25% of the total labour force, were reassigned to a different labour market, and the delineation was refined to the municipal level. These corrections also serve as a response to the criticism that the assignment of elements to clusters in hierarchical cluster procedures is not automatically corrected when the structure of the cluster changes. This should be a minor problem in the presented approach because only a few iterations were necessary. The few corrections that were required in the optimisation procedure indicated that the overall clustering algorithm worked well.

The optimisation procedure resulted in a delineation of 50 labour markets, which is shown in Fig. 4. The resulting shift in the boundaries of the labour market regions was minimal, but the modularity of the delineation increased slightly from $Q = 0.8447$ to $Q = 0.8492$.
Legend: ── LMRs; □ changes due to optimisation

Fig. 4: Result of the optimisation procedure

Source: Authors' own illustration
5.4 The robustness of the labour market delineation

The modularity value of the chosen delineation validates its high quality. This argument is clearer in comparison with other delineations that use alternative quality measures (see section 5.5 and 5.6). To assess the robustness of the current method, we compared the results of the cluster generator and delineations that were based on different aggregation levels, as follows:

a) the three best delineations with different thresholds on a municipal region level for the matrix NEW (years 2006-2008),

b) the three best delineations with different thresholds on a municipal region level for the matrix OLD (years 1993-1995), and

c) the best delineation computed on a municipal region level and municipal level for the years 2006-2008.

The comparison was conducted on a municipal level by categorising municipalities into three categories. The first category (named “Core”) contained all municipalities that belonged to the same labour market region in all compared delineations. The second category (“Part”) included the municipalities of all regions that formed a separate labour market region in some instances but belonged to a larger labour market region otherwise. Finally, the third category (“Overlap”) included all municipalities that belonged to different labour market regions. Table 1 shows the percentage of municipalities and the labour force that belonged to these categories in the different comparisons.
Table 1: Robustness of the actual delineation

<table>
<thead>
<tr>
<th>Category</th>
<th>% of municipalities</th>
<th>% of labour force</th>
<th>% of municipalities</th>
<th>% of labour force</th>
<th>% of municipalities</th>
<th>% of labour force</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>70.6</td>
<td>81.3</td>
<td>79.7</td>
<td>89.4</td>
<td>79.8</td>
<td>91.2</td>
</tr>
<tr>
<td>Part</td>
<td>20.4</td>
<td>15.1</td>
<td>13.3</td>
<td>8.3</td>
<td>10.0</td>
<td>5.8</td>
</tr>
<tr>
<td>Overlapping</td>
<td>9.0</td>
<td>3.6</td>
<td>6.9</td>
<td>2.3</td>
<td>10.2</td>
<td>3.0</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Note: Compared delineations were not optimised

According to the comparison, a vast majority of municipalities belonged to the same labour market regions. Because these regions included most of the important labour market centres, the percentage of the labour force within this category was even larger. The second category (“Part”) was less problematic. Regions that belonged to one labour market region in some cases but formed a separate region in other cases could be characterised as important sub-regions of larger regions. The most problematic category, “Overlapping”, was comparatively small.

With regard to the quality criteria for the compared delineations in Table 2, three important features must be mentioned. First, all delineations exhibited high values for modularity and low values for commuter shares. Second, due to the increase in both daily and long-distance commuting over time (EINIG and PUETZ, 2007; BEHNEN and OTT, 2006), quality measures were more effective for delineations of the matrix OLD. The increase in long-distance commuting might explain the decreasing number of labour markets as well. Third, the delineations on a municipal region level (2,000 regions) differed only slightly from the delineations on a municipal level (12,000 regions).
Table 2: Quality of delineations used in the comparisons

<table>
<thead>
<tr>
<th>Delineations of municipal region level for matrix NEW (2006-2008)</th>
<th>Number of labour market regions</th>
<th>Modularity Q</th>
<th>% of commuters between labour market regions</th>
</tr>
</thead>
<tbody>
<tr>
<td>threshold: 7, iteration: 4, optimised</td>
<td>50</td>
<td>0.8492</td>
<td>10.2</td>
</tr>
<tr>
<td>threshold: 7, iteration: 4 a</td>
<td>51</td>
<td>0.8447</td>
<td>10.6</td>
</tr>
<tr>
<td>threshold: 5, iteration: 2 a</td>
<td>53</td>
<td>0.8443</td>
<td>10.4</td>
</tr>
<tr>
<td>threshold: 8, iteration: 7 a</td>
<td>63</td>
<td>0.8391</td>
<td>11.1</td>
</tr>
<tr>
<td>b) Delineations of municipal region level for matrix OLD (1993-1995)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>threshold: 5, iteration: 3 b</td>
<td>66</td>
<td>0.8756</td>
<td>8.0</td>
</tr>
<tr>
<td>threshold: 4, iteration: 2 b</td>
<td>66</td>
<td>0.8756</td>
<td>7.8</td>
</tr>
<tr>
<td>threshold: 6, iteration: 4 b</td>
<td>84</td>
<td>0.8752</td>
<td>8.2</td>
</tr>
<tr>
<td>c) Delineations of municipal level for matrix NEW (2006-2008)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>threshold: 7, iteration: 7, optimised</td>
<td>53</td>
<td>0.8477</td>
<td>9.9</td>
</tr>
<tr>
<td>threshold: 7, iteration: 7 c</td>
<td>54</td>
<td>0.8470</td>
<td>10.0</td>
</tr>
</tbody>
</table>

a, b, c — Delineations, used in the comparisons

5.5 Descriptive data

In this section, the optimised 50-labour-market delineation is described in greater detail and compared with well-established delineations according to several characteristics. Table 3 presents a number of descriptive statistics for the ten largest (i.e., most populous) and smallest (least populous) labour market regions of the optimised 50-labour-market delineation. The most populous region was the Duesseldorf-Ruhr region, with 10 million inhabitants and over 3 million employees. This region accounted for over 12% of Germany's Gross Domestic Product (GDP). The next largest regions, Munich, Frankfurt am Main, and Hamburg, had approximately 6 million inhabitants each. The economic power of these regions was only slightly smaller than that of the Duesseldorf-Ruhr region. Some of the least populous labour market regions were located in Eastern Germany and Bavaria. An examination of the GDP per capita and the unemployment rate revealed that labour market regions also differed qualitatively.
In addition to the newly introduced modularity measure Q, the labour market regions’ commuting ratio and level of self-containment are well-established quality measures. The commuting ratio is the ratio of in-commuters to out-commuters (in percentage). Values under 100 characterise regions with a surplus of outward commuters; values over 100 indicate that a region has a surplus of inward commuters. For functional delineations, the figures should be close to 100. Indeed, the larger labour market regions appeared to be quite balanced. Self-containment measures the percentage of the employed local labour force that works in a region. It can reach a maximum of 100%. In practice, however, there is always a certain percentage of out-commuters, which reduces the self-containment values. Therefore, values of approximately 90%, as in the present delineation, indicate a successful delineation result, especially when compared to other delineations (Table 4).
Table 3: Descriptive statistics for the ten largest and smallest labour market regions (LMRs)

<table>
<thead>
<tr>
<th></th>
<th>Population 31.12.2007 in 1,000s</th>
<th>GDP 2007 in bn</th>
<th>GDP per capita in 2007 in 1,000s</th>
<th>Employees subject to social insurance at place of work 30.6.2008 in 1,000s</th>
<th>Unemployed persons June 2008 in 1,000s</th>
<th>Unemployment rate June 2008</th>
<th>Commuting ratio</th>
<th>Self-containment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Largest LMRs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duesseldorf-Ruhr</td>
<td>9932.2</td>
<td>301.5</td>
<td>30.4</td>
<td>3087.0</td>
<td>461.0</td>
<td>9.5</td>
<td>100.8</td>
<td>91.6</td>
</tr>
<tr>
<td>Munich</td>
<td>6191.3</td>
<td>245.5</td>
<td>39.6</td>
<td>2302.9</td>
<td>116.1</td>
<td>3.5</td>
<td>102.8</td>
<td>91.8</td>
</tr>
<tr>
<td>Frankfurt a.M.</td>
<td>6143.7</td>
<td>223.3</td>
<td>36.3</td>
<td>2198.7</td>
<td>189.7</td>
<td>6.0</td>
<td>104.9</td>
<td>88.2</td>
</tr>
<tr>
<td>Hamburg</td>
<td>5982.8</td>
<td>191.6</td>
<td>32.0</td>
<td>1972.6</td>
<td>235.6</td>
<td>7.8</td>
<td>101.4</td>
<td>92.9</td>
</tr>
<tr>
<td>Stuttgart</td>
<td>5567.8</td>
<td>189.3</td>
<td>34.0</td>
<td>2004.3</td>
<td>110.2</td>
<td>3.8</td>
<td>101.1</td>
<td>92.0</td>
</tr>
<tr>
<td>Berlin</td>
<td>5459.4</td>
<td>132.0</td>
<td>24.2</td>
<td>1671.8</td>
<td>358.4</td>
<td>12.9</td>
<td>98.2</td>
<td>94.2</td>
</tr>
<tr>
<td>Cologne</td>
<td>3354.7</td>
<td>108.3</td>
<td>32.3</td>
<td>1120.3</td>
<td>137.2</td>
<td>8.2</td>
<td>103.8</td>
<td>83.7</td>
</tr>
<tr>
<td>Bielefeld/Paderborn</td>
<td>2584.0</td>
<td>72.7</td>
<td>28.1</td>
<td>851.9</td>
<td>87.0</td>
<td>6.7</td>
<td>99.6</td>
<td>90.1</td>
</tr>
<tr>
<td>Nuremberg</td>
<td>2329.7</td>
<td>77.6</td>
<td>33.3</td>
<td>848.3</td>
<td>55.3</td>
<td>4.5</td>
<td>101.0</td>
<td>90.2</td>
</tr>
<tr>
<td>Leipzig</td>
<td>2325.5</td>
<td>51.7</td>
<td>22.2</td>
<td>736.6</td>
<td>170.6</td>
<td>14.5</td>
<td>95.4</td>
<td>89.9</td>
</tr>
<tr>
<td>Smallest LMRs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offenburg</td>
<td>364.3</td>
<td>12.0</td>
<td>33.0</td>
<td>129.0</td>
<td>7.0</td>
<td>3.6</td>
<td>97.4</td>
<td>85.4</td>
</tr>
<tr>
<td>Greifswald/Stralsund</td>
<td>353.8</td>
<td>7.2</td>
<td>20.3</td>
<td>108.4</td>
<td>26.3</td>
<td>14.7</td>
<td>92.8</td>
<td>90.4</td>
</tr>
<tr>
<td>Coburg</td>
<td>334.8</td>
<td>9.9</td>
<td>29.7</td>
<td>123.1</td>
<td>9.4</td>
<td>5.3</td>
<td>100.4</td>
<td>85.2</td>
</tr>
<tr>
<td>Suhl</td>
<td>319.7</td>
<td>6.5</td>
<td>20.5</td>
<td>95.0</td>
<td>13.8</td>
<td>8.2</td>
<td>80.0</td>
<td>87.6</td>
</tr>
<tr>
<td>Bayreuth</td>
<td>308.2</td>
<td>8.9</td>
<td>29.0</td>
<td>102.1</td>
<td>8.2</td>
<td>5.1</td>
<td>97.5</td>
<td>81.5</td>
</tr>
<tr>
<td>Konstanz</td>
<td>274.8</td>
<td>8.1</td>
<td>29.4</td>
<td>83.2</td>
<td>5.9</td>
<td>4.2</td>
<td>98.2</td>
<td>87.8</td>
</tr>
<tr>
<td>Harz</td>
<td>239.5</td>
<td>4.8</td>
<td>19.9</td>
<td>67.4</td>
<td>15.6</td>
<td>13.0</td>
<td>83.2</td>
<td>87.6</td>
</tr>
<tr>
<td>Hof</td>
<td>155.9</td>
<td>4.5</td>
<td>29.1</td>
<td>54.7</td>
<td>5.0</td>
<td>6.7</td>
<td>110.5</td>
<td>74.0</td>
</tr>
<tr>
<td>Weiden i.d.OPf.</td>
<td>132.9</td>
<td>4.1</td>
<td>31.0</td>
<td>45.5</td>
<td>3.4</td>
<td>4.9</td>
<td>103.3</td>
<td>74.1</td>
</tr>
<tr>
<td>Wunsiedel i.F.</td>
<td>128.3</td>
<td>3.3</td>
<td>25.5</td>
<td>38.7</td>
<td>3.5</td>
<td>5.6</td>
<td>93.8</td>
<td>81.6</td>
</tr>
</tbody>
</table>

Source: Statistisches Bundesamt (Federal Statistical Office); Volkswirtschaftliche Gesamtrechnungen der Laender (Regional Accounts); Bundesagentur fuer Arbeit (Federal Employment Agency); authors’ own calculations

Table 3 shows that the Bavarian labour market region Hof had the lowest self-containment level. More than one-quarter of its population out-commuted. Still, Hof had an in-commuter
surplus of 10%. Both values indicate that a labour market delineation was difficult for this region.

5.6 Comparison with other delineations

Compared with the other delineations, the quality of the current study’s procedure is manifest (Table 4). The percentage of people who crossed labour market boundaries (the column “Commuters”\(^\text{11}\)) was by far the lowest in the presented 50-labour-market delineation. The average commuting ratio and the self-containment values of the present delineation were considerably higher than were those of the well-established delineations.\(^\text{12}\) Moreover, the standard deviation of the commuting ratios was considerably smaller than were those of the other delineations. Particularly, the high variance of values for the commuting ratio and the low minimum values for self-containment of the other delineations indicate that there were at least some less-than-ideal delineated regions. These shortcomings also occurred because all of these delineations considered certain constraints, such as following district borders, minimum sizes, and maximum commuting times. However, in an earlier comparison (Kropp and Schwengler, 2008), we applied these methods without further restrictions like maximum commuting times or minimum sizes and came to similar conclusions.
Table 4: Comparison of the quality of various delineations

<table>
<thead>
<tr>
<th>Delineation</th>
<th>No.</th>
<th>Modularity Q</th>
<th>Commuters</th>
<th>Commuting ratio*</th>
<th>Self-containment ratio*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>Mean</td>
<td>SD</td>
<td>Min.</td>
</tr>
<tr>
<td>LMR (municipal regions)</td>
<td>50</td>
<td>0.8492</td>
<td>10.3</td>
<td>98.3</td>
<td>5.1</td>
</tr>
<tr>
<td>Regional Labour Markets(^a)</td>
<td>150</td>
<td>0.7966</td>
<td>18.8</td>
<td>95.2</td>
<td>8.5</td>
</tr>
<tr>
<td>Planning Regions(^b)</td>
<td>96</td>
<td>0.7898</td>
<td>19.5</td>
<td>95.8</td>
<td>11.6</td>
</tr>
<tr>
<td>Joint Task Regions</td>
<td>270</td>
<td>0.7343</td>
<td>25.7</td>
<td>92.5</td>
<td>13.4</td>
</tr>
<tr>
<td>413 Districts</td>
<td>413</td>
<td>0.6144</td>
<td>38.2</td>
<td>98.2</td>
<td>35.7</td>
</tr>
</tbody>
</table>

*Mean – arithmetic mean, SD – standard deviation, Min. – minimum, and Max. – maximum

Source: Bundesagentur fuer Arbeit (Federal Employment Agency); authors' own calculations; \(^a\) ECKEY et al. (2006), \(^b\) Bundesinstitut fuer Bau-, Stadt- und Raumforschung (Federal Institute for Research on Building, Urban Affairs, and Spatial Research) (2010)

High modularity values correlated with a balanced commuting ratio and a high level of self-containment, confirming the suitability of the modularity approach for the evaluation of labour market delineations. For example, the 0.05 higher value of Q in the current delineation, in comparison with the delineation of ECKEY et al. (2006), resulted in fewer commuters (by 8 percentage points), much more balanced regions (commuting relations closer to 100)\(^{13}\), and a higher self-containment ratio of approximately 6 percentage points. Because the aim of the current approach is to reduce the commuter share, the search for an algorithm that provides low commuter shares should be straightforward. However, whereas maximising modularity is a successful strategy to delineate functional regions, maximising commuting ratios or self-containment or minimising commuter shares is not because the maximum value is only achieved by merging all regions into one region (cf. NEWMAN and GIRVAN, 2004, p. 7).
The present study shows that a delineation of commuting areas with high modularity values and low inter-regional commuter shares comprises approximately 30-75 labour market regions (cf. Fig. 2). Other descriptive data in Table 5 show the heterogeneity of the labour market regions in terms of size. Labour market regions with high modularity values were considerably more heterogeneous in terms of size than the established functional delineations, as confirmed by the large standard deviations for population, GDP, the number of employed persons being subject to the compulsory social security scheme, and the number of unemployed persons. By implication, with our data a labour market delineation that minimises commuting interactions between functional regions cannot be homogeneous in terms of size, although this is often required in the interests of practical applicability.
Table 5: Comparison of various delineations according to selected descriptive statistics

<table>
<thead>
<tr>
<th>Delineation</th>
<th>Population 31.12.2007 in 1,000s</th>
<th>GDP 2007 in EUR bn</th>
<th>GDP per capita 2007 in 1,000s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Min.</td>
</tr>
<tr>
<td>LMR (municipal regions)</td>
<td>1648.2</td>
<td>2040.7</td>
<td>128.3</td>
</tr>
<tr>
<td>Regional Labour Markets(^a)</td>
<td>549.4</td>
<td>682.0</td>
<td>63.6</td>
</tr>
<tr>
<td>Planning Regions(^b)</td>
<td>858.4</td>
<td>623.3</td>
<td>227.3</td>
</tr>
<tr>
<td>Joint Task Regions</td>
<td>305.2</td>
<td>399.7</td>
<td>63.6</td>
</tr>
<tr>
<td>413 Districts</td>
<td>199.5</td>
<td>225.1</td>
<td>35.2</td>
</tr>
</tbody>
</table>

Employees subject to social insurance at place of work 30.06.2008 in 1,000s | Unemployed persons in June 2008 in 1,000s | Unemployment rate June 2008

| Delineation | Mean | SD | Min. | Max. | Mean | SD | Min. | Max. | Mean | SD | Min. | Max. |
|----------------------------|----------------------------------|--------------------|--------------------------------|
| LMR (municipal regions) | 546.9 | 682.8 | 38.7 | 3087.0 | 63.2 | 89.7 | 3.4 | 461.0 | 7.1 | 3.6 | 2.7 | 16.3 |
| Regional Labour Markets\(^a\) | 182.3 | 242.1 | 15.2 | 1349.0 | 21.1 | 32.8 | 1.4 | 293.0 | 7.4 | 4.1 | 2.1 | 18.6 |
| Planning Regions\(^b\) | 284.8 | 239.6 | 61.2 | 1131.0 | 32.9 | 31.9 | 5.6 | 229.0 | 7.5 | 3.7 | 2.3 | 15.7 |
| Joint Task Regions | 101.3 | 153.6 | 15.2 | 1100.3 | 11.7 | 19.1 | 1.0 | 229.0 | 7.3 | 3.9 | 2.1 | 18.9 |
| 413 Districts | 66.2 | 88.7 | 11.8 | 1080.6 | 7.6 | 13.4 | 0.7 | 229.0 | 7.2 | 3.9 | 1.4 | 20.0 |

Source: Statistisches Bundesamt (German Federal Statistical Office); Volkswirtschaftliche Gesamtrechnungen der Laender (Regional Accounts); authors’ own calculations; \(^a\) ECKEY et al. (2006), \(^b\) Bundesinstitut fuer Bau-, Stadt- und Raumforschung (Federal Institute for Research on Building, Urban Affairs, and Spatial Research) (2010)

A surprising finding was the small number of labour market regions and the dimensions of the larger labour market regions when comparing the current delineation to other delineations.

Labour market regions in the present delineation cannot be characterised as labour market
centres and their adjacent hinterlands. Instead, the regions are large-scale areas that are characterised by a dense network of direct and indirect commuting flows. For example, whereas many workers commute to large cities such as Munich from the city's more distant hinterland, accepting above-average commuting distances and home-to-office times (cf. BUNDESAMT FÜER BAUWESEN UND RAUMORDNUNG, 2005), a large number of commuters travel from the hinterland to neighbouring labour market centres and vice versa.

Finally, we investigated whether functionally delineated labour market regions are also more economically homogeneous in terms of GDP per capita or unemployment rate than administrative regions (Table 6). The first column for each indicator provides the standard deviations between the regions, which are also provided in Table 5. The next column shows the average standard deviations for all districts within the delineations. Because the calculations were based on district-level data, a variant form of the 50-labour-market delineation was used in this comparison. In both examples, the standard deviations were indeed smaller between districts within functional regions than across all 413 districts. The 50-labour-market delineation did not always achieve the best values. However, the small standard deviations were remarkable because relatively homogeneous regions could be generated with the help of a very rough delineation or one that comprised comparatively few regions.
Table 6: Standard deviations between delineated regions and districts within these regions

<table>
<thead>
<tr>
<th>Regions</th>
<th>GDP per capita 2008, SD</th>
<th>Unemployment rate in June 2008, SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>between functional</td>
<td>between districts within functional</td>
</tr>
<tr>
<td></td>
<td>regions</td>
<td>regions</td>
</tr>
<tr>
<td>LMR (Districts)</td>
<td>4.8</td>
<td>9.1</td>
</tr>
<tr>
<td>Regional Labour Markets(^a)</td>
<td>5.8</td>
<td>9.1</td>
</tr>
<tr>
<td>Planning Regions(^b)</td>
<td>6.4</td>
<td>7.8</td>
</tr>
<tr>
<td>Delineation Joint Task</td>
<td>6.2</td>
<td>10.7</td>
</tr>
<tr>
<td>413 Districts</td>
<td>11.1</td>
<td>/</td>
</tr>
</tbody>
</table>

Source: Statistisches Bundesamt (Federal Statistical Office), Volkswirtschaftliche Gesamtrechnungen der Laender (Regional Accounts); Bundesagentur fuer Arbeit (Federal Employment Agency); authors' own calculations; \(^a\) ECKEY et al. (2006), \(^b\) Bundesinstitut fuer Bau-, Stadt- und Raumforschung (Federal Institute for Research on Building, Urban Affairs, and Spatial Research) (2010)

6 Conclusions and outlook

In this study, we presented a new approach for delineating functional labour market regions based on commuting flows. By adapting a graph theoretical approach and introducing the modularity measure Q from network science to regional science, we found a new method how to delineate labour market regions in an effective way. Furthermore, the modularity approach enabled us to compare different delineations in an unbiased manner. In contrast to other commonly used measures, the modularity measure Q does not necessarily improve if regions are merged. In comparison to established delineations, the result of the current study was confirmed by other commonly used measures. Specifically, delineations with high modularity values had fewer commuters, more balanced commuting ratios, and higher levels of employment self-containment.

However, delineations with a high modularity value comprised only a small number of labour market regions in Germany, approximately 30 to 75. The result with the highest measure Q that we identified was a 50-labour-market delineation, in other words, fewer
regions than the well-established delineations. These 50 labour market regions were quite heterogeneous in their terms of size. Especially around cities such as Hamburg, Berlin, Munich, and Frankfurt (Main), complex commuting patterns led to large labour market regions. These large agglomerations cannot be characterised as dominant centres and immediate commuter belts. Commuting flows between sub-centres within the hinterland and between the hinterland and the periphery also play an important role. Even if the labour market regions transcend the boundaries of commuter belts, they constitute a common labour market. In the medium term, changes in one part of this labour market are likely to affect other areas that are weakly linked to or distant from the area in which these changes occur.

We also demonstrated that established functional delineations do not always appropriately capture important commuting relations between regions, as observed from the significantly higher commuter shares in the case of delineations that comprised a large number of regions. This is especially true for delineations that are subject to certain restrictions such as minimum size, maximum commuter times within delimited regions, and consistency with administrative boundaries. The labour markets of the city states of Hamburg, Berlin, and Bremen were distinctly larger than their own federal state boundaries. If the German federal state boundaries are utilised, these important economic centres are cut off from their hinterlands. Without a coordinated labour market and economic policy that transcends federal state boundaries, important labour market issues cannot be tackled successfully.

The identified heterogeneity of regional labour markets is important for regional policy. As labour markets around metropolitan centers are larger than they are presented in established delineations, the number of regions that should coordinate their regional labour policy is larger as well. Conversely, the development of very small functional regions might be hampered by the regions’ insufficient size. It might be a challenge for labour market and economic policy to manage these different labour market regions and determine which
administrations should cooperate with each other. In general, the observed heterogeneity is not surprising in light of the dynamics of aggregation processes in recent decades. If the mobility of goods and labour is increasingly restricted by distance, agglomeration processes might speed up and increase heterogeneity. The creation of metropolitan areas in Germany since 1995 is certainly one attempt to cope with the reality of large functional regions. How such heterogeneous regions may serve as an appropriate basis for regional science must be examined by future research. The heterogeneity itself might be an explanation for differences in regional development. Conversely, a comparison of larger regions could be more valid if based on the current proposal for labour market delineations.

We claim that the current three-step-method facilitates the delineation of functional regions in a manner that captures spatial interaction flows more effectively than previous attempts. In this way, the current approach provides a new answer to the question “What is a region?” and might help define functional regions that are an appropriate foundation for regional analyses.

7 References

8 Endnotes

1 In this comparison, we applied all methods without restrictions like maximum commuting times or minimum sizes.

2 See SMART (1974, pp. 252ff.) for early examples.

3 Finding groups – nodes or units that are strongly related to each other – in networks has become an important subject in the study of complex networks (cf. GIRVAN and NEWMAN, 2002; PALLA et al., 2005).
Nevertheless, analyses based on all 12,000 municipalities to control the used method have confirmed the robustness of the results (section 5.4).

In this way, the current procedure is similar to that used by RABINO and OCCELLI (1997). These researchers combined the graph theory approach with the threshold value procedure using threshold values for the minimum magnitude of the dominant commuting flows and the minimum size of the catchment areas (measured in terms of inhabitants and the number of municipalities). Tree graphs are formed only by commuting flows that exceed a certain threshold. HAAG and BINDER (2001) also used this extended concept for spatial analyses in the Stuttgart and Turin areas.

Fig. 3 (section 5.2) demonstrates the iteration process with a threshold of 7.

We used a symmetric interaction matrix as described in the original paper of NEWMAN and GIRVAN (2004, p. 7) and implemented in standard software packages for network analysis as Pajek, ucinet or R. However, it would be possible to employ NEWMAN’s (2003, p. 2) paper on assortative mixing, in which an asymmetric case was discussed, and specify $$Q = \sum (e_{ji} - a_i b_j)$$ with $$a_i = \sum_j e_{ij}$$ and $$b_j = \sum_i e_{ji}$$. We thank Michal Bojanowski for recommending this solution. As inflow and outflow of our labour market regions appear to be very balanced, the authors rely on the established formula.

Methods other than the current graph theoretical approach can be used as a cluster generator rather than or in addition to this approach.

As a rule, the labour market regions were named after the municipality or municipal region that was the terminal point of the sub-graph. Only in cases in which this name did not typify the labour market region, a more appropriate label was chosen.

The island of Borkum was merged with the labour market region Oldenburg because it would otherwise form an exceptionally small labour market. Two municipalities with insufficient data and three misplaced municipalities with fewer than 500 employees total were assigned to a surrounding labour market region. Misplacements may result from data problems; however, in some cases, municipalities were most strongly connected to another (nearby) labour market region than all of their neighbours.

Here, the share of commuters (employees who live and work in different labour market regions) of all employees was computed.
The commuting ratio between labour market regions should generally decrease, and the level of self-containment should generally increase with fewer labour market regions. The measure Q, however, does not have such a bias. One could argue that these results are due to the small number of labour market regions rather than the method. However, the current cluster generator produced delineations with comparable numbers of labour markets but with higher modularity values and lower commuting ratios (e.g., a 99-region-delimitation with Q=0.8304 and 13.6% commuters, a 153-region-delimitation with Q=0.8133 and 15.8% commuters, and a 274-region-delimitation with Q=0.7640 and 22.0% commuters, see also Fig. 2).

The values on a district-level delineation were also close to 100 but had a much higher standard deviation.